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Abstract—This paper constructs a new matrix model to analyze the relationship of the stereogenic center and its substituents to the specific
optical rotation. The variables used as matrix elements include (1) the substituents’ comprehensive masses (m), (2) radii (r), (3) symmetries
(s), and (4) the electronegativities (c) of the atoms or groups which are bound to the stereogenic center. Solution of the matrix determinants
was postulated to give scalar numbers proportional to the magnitudes of the specific rotations of the molecules being considered. A total of 94
example calculations were performed to predict the relative magnitude and direction of rotation at the sodium D line. Only two calculations
failed to predict the correct direction of rotation and this occurred only when their optical rotation values were less than 0.01�. The B3LYP
functional at the aug-cc-pVDZ basis set level was also used to compute the optical rotations of the 66 example chiral molecules whose geo-
metries were previously obtained at the B3LYP/6-31G(d) level. The expected successful predictions for these acyclic molecules’ optical
rotation values did not appear. Overall, the matrix model is one approach to understand the optical rotation.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The relationship between a chiral center and its specific op-
tical rotation has long been a very important and well-known
part of stereochemistry research.1–5 This has been of interest
since Biot discovered optical activity of turpentine, laurel,
and lemon in liquids and solvents in 1815.1a The first theory
of optical rotation was described by Fresnel in 1824.1b Many
methods have been used to study this relationship, including
chemical degradation of the target molecules,6a total synthe-
sis,6b and physical methods such as X-ray crystallography,6b

circular dichroism,6b NMR analysis of Mosher esters,7 and
magnetic optical rotation.8 Empirical and semi-empirical
methods9 and rules have been used in this effort. Now,
ab initio quantum-mechanical calculations estimating opti-
cal rotation have been used.10–29 Recent advances in these
approaches have been extremely encouraging. Although it
is one of the oldest research areas in stereochemistry, deter-
mining the specific optical rotation is still a seminal tool for
studying the configuration of the chiral molecules.

An early representative empirical method was developed by
Brewster.9d–f Other efforts were also explored.9a–c,g–i The
Brewster model predicted the optical rotation using a screw
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pattern of electron polarizability. The specific rotation’s
magnitude is related to the refractions of the atoms and de-
pends on different atomic/substituent’s conformations. His
intuitive work on rotation calculations opened a new stage
at that time, and these ideas have influenced several genera-
tions of scientists.

The first use of modern Hatree–Fock (HF) calculations in op-
tical rotations was reported by Polavarapu10a in 1997, using
the Rosenfeld method developed in the CADPAC program
by Amos.10b This took place almost 76 years after the initial
construction of quantum-mechanical methods of optical ro-
tation reported by Rosenfeld.11 The first application of den-
sity-function theory (DFT) to optical rotation was reported
by Yabana and Bertsch.12 Then, static-limit optical rotation
calculations were reported by Cheeseman et al. in 2000.13a

In 2002, Ruud and Helgaker reported the first coupled-cluster
(CC) calculations of optical rotation.14c In 2004, Tam et al.
reported the method of optical rotation calculations at the
level of coupled-cluster single doubles (CCSD) level.15 In
the past decade, Wipf et al.,16 Grimme and Ahlrichs,17

Pedersen,18 Giorgio,19 Nafie,20 Wiberg,13h–j,21 Vaccaro,21

Jorgensen22 and other theoretical chemists23–26 explored
several computational approaches for use in optical rotation
calculations. At the same time, some optical rotation compu-
tation programs, such as Dalton, Gaussian, Turbomole, and
PSI have been developed.28 These developed methods have
enriched this research field.
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However, all methods used so far to predict the magnitude
and direction of optical rotation have had drawbacks. For
example, chemical methods require some definite quantity
of sample and consume much time. Single crystals are not al-
ways readily available for crystal structure determinations.
The newer quantum-mechanical approaches are useful and
have a fundamental basis in physics. Most of the successful
examples in optical rotation computations were relatively
rigid compounds. Acyclic chiral flexible compounds have
not been as thoroughly investigated as cyclic compounds,
due to the large numbers of conformations that need to be in-
vestigated for acyclic chiral molecules. Importantly, as stated
in Crawford’s review, ‘in spite of these advances, it is not yet
understood what level of theory is necessary to obtain ‘the
right answer for the right reason’ for optical rotation, and
many of successes rely implicitly on fortuitous cancellation
of errors (e.g., limited basis sets, lack of explicit solvation,
vibrational averaging, etc.)’.29 It seems clear that chemists
have a long way to go to find an absolutely rigorous physical
explanation that can be quantitatively exploited to accurately
calculate optical rotation.

Other methods may exist to explain the optical rotation
phenomenon and compute its magnitudes and direction.
Thus, it would be valuable to develop an easily understand-
able mathematical model, which can be directly perceived
and intuitively understood by most experimental chemists.
An effective model that attributes and predicts both the mag-
nitude and direction of the specific optical rotation of chiral
molecules is needed. We now propose a different type of
qualitative model, which has significant potential for further
development.

Our mathematical model can predict the sign and relative
magnitudes for non-ring chiral molecules. This method as-
sumes that the geometries of the chiral molecules are correct
(actual) structures. These structures can, in principle, be pre-
dicted by quantum methods, such as HF or DFT approaches
using different basis sets, by simply using typical bond angles
or lengths or by experimental methods (e.g., X-ray crystal
structure, etc.). Characteristics of the different substituents
bound to a stereogenic center within the molecule were se-
lected. The comprehensive mass for each of four substituents
is used instead of the whole molecular weight, which was
used in the computations of optical rotation in quantum the-
ory. The radius of the substituent, whose values change with
the substituents’ conformations, is a new variable. Electro-
negativity, which is related to a group’s polarizability, was
selected. The symmetry number, related to the group’s asym-
metry, was the final characteristic selected (see Section 4 for
details of all four concepts here). In this matrix model,
comprehensive mass, radius, and electronegativity can each
be computed by quantum theory if desired or their values
can be based on experiments. The symmetry number is a com-
pletely new variable.

This model incorporates tangible characteristics of each sub-
stituent surrounding a stereogenic center in order to predict
the direction and magnitude of that molecule’s specific rota-
tion. Molecules with two or more chiral centers were also
used in optical rotation computations, so this model is not
limited to molecules with only a single stereogenic center.
Each molecular conformation can independently contribute
to the specific rotation, and each existing conformation and
its population must be included in any prediction. Quantum
mechanical calculations can be incorporated into the overall
matrix model to calculate conformational energies (hence
populations) and other molecular features. Alternatively, ex-
perimental values can be used if available. Finally, standard
bond length, angles, and other properties can be incorporated
in a less rigorous but useful approach to employ this model.

2. Matrix model

The specific rotation is a dynamic three-dimensional charac-
teristic. Its magnitude and direction change with wavelength,
temperature, solvent and so on. Quantum-mechanical theory
relates optical rotation to a molecular parameter b(n), where
b equals (1/3)Tr[ba,b] and bab(n) is the frequency-dependent
electronic dipole-magnetic polarizability tensor.3a,e,32 Com-
putations of ba,b at the HF level of theory were introduced
by Amos for the static limit (n¼0)10b and by Helgaker for
any frequency n.14a This method can simply be described as
follows:

½a�n¼
28;800p2NAn2

c2M
gs;n½bðnÞ�0

where NA is Avogadro’s number, M is the molecular weight,
c is the light speed in vacuum, g is the correction from sol-
vent, which is either neglected (g¼1) or approximated by
equation: g¼(n2+2)/3. Thus, the value of [a]n depends
upon the magnitude of the tensor of b.

Quantum methods, such as TD-DFT,12 CC2,13–15 or other
methods16–21 have been developed. These methods can
compute the absolute values of chiral molecule’s optical
rotation and many successes have been achieved in optical
rotation computations. The chiral molecules used in these
calculations have been relatively rigid. When many confor-
mations exist in flexible and acyclic compounds, the compu-
tation time will become very large using DFT or especially
CCSD methods.

DFT calculations, which are also reported in this paper, are
used as a standard for comparison with results obtained
using the matrix model. Our results show that this matrix
method is worthy of future development. These DFT compu-
tations, including geometry optimizations at the B3LYP/
6-31G(d) level, required continuous use of five processors
for almost one month in a workstation. The conformations
were found first for each chiral molecule and were then
used to obtain the corresponding optical rotations. Details
are summarized in Supplementary data.

Brewster’s model uses refractivity. Quantum mechanical the-
ories use molecular mass, frequency of light, and a specific
molecular conformation. All the factors (matrix elements),
which influence the optical rotation values used in the matrix
model, are separated into two parts: internal factors and ex-
ternal factors. Internal factors are independent of each other.
Examples include molecular weight, electronegativities, and
the geometries of different conformations. External factors
are those that can be changed by the conditions used in optical
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rotation experimental measurements. Examples include
the solution concentration, the wavelength of light, and the
temperature. All external factors affect the magnitude of
the internal factors or states. Thus, they affect the optical ro-
tations. For example, a temperature rise would change the
conformational populations in solution. This new population
distribution would result in the change of the radii of the sub-
stituents. This, in turn, would cause the optical rotation value
to change. Concentration of chiral molecules in solution
greatly affects the optical rotation. Thus, a model must treat
the entire molecule as a whole.

The properties defining the entire molecule can be obtained
from its calculated or experimental structure. Although less
rigorous, one could use structural approximations from
classical bond length and angles. We represent each molec-
ular factor (e.g., element) in four parts (four substituents at
the stereogenic center), which are then recombined (recon-
structed) when put together in the matrix model (2-D model
rather than a 1-D equation). A scalar optical rotation value
can be produced by solving this model. Solving the matrix’s
determinant provides this reconstruction of the optical rota-
tion as a scalar value.

A typical flexible chiral molecule has four different groups
that can rotate freely in space. Each of the four groups’
masses could be obtained and the other characteristics could
be also obtained. The most difficult problem in previous
methods is the complete determination of all the different
conformations, their relative populations and the individual
contributions of each conformation in predicting optical
rotations. Each different conformation has a different radii,
defined in the model as an effective radii. Therefore, by com-
puting the effective radii of each of the substituents over the
existing conformational populations, radii usewould be a log-
ical substitute for conformations. Obviously, this portion of
the matrix model could be constructed from conformations
and their relative energies calculated by quantum mechanics.

A model based on the mathematics deduction here could
provide the solutions to this question. The concepts of radii
and comprehensive mass can serve to describe and account
for the different conformations when the traditional chemis-
try data are used. The optical rotation values were computed
for 94 chiral molecules using this matrix model method.
Then 66 molecules of this same series were subjected to
DFT calculations to obtain their predicted optical rotations
for comparison.

The model incorporates characteristics of any molecule into
a matrix where the molecular characteristics are elements of
that matrix. The elements are defined relative to an axis
system in which the molecule’s three-dimensional structure
is placed. Any number of elements can, in principle, be
used; we chose only four. After defining and quantifying
each element, they were incorporated into the matrix in order
to construct the relationship of the elements to the specific
rotation within the molecule. The scalar number det(D)
obtained by calculating the matrix determinant is postulated
to be proportional to the specific rotation.

The weighting factors for each of the matrix elements are
the four coefficients a1–a4 (where a1sa2sa3sa4). Each
coefficient describes the different contribution of the matrix
element to the optical rotations and therefore, each will have
different value with varying unit (e.g., the unit of a1 is the
contribution per one carbon atomic weight to the entire mo-
lecular optical rotation). However, their values are unknown
at present. By defining the formula [a]D¼k0 det(D), the
model illustrates why the direction of rotation reverses
when any two substituents on the stereogenic carbon ex-
change their positions and it shows why a molecule’s rotation
value is zero when any two groups are the same. Furthermore,
dividing the experimental value of [a]D by the value of the
matrix determinant, det(D), gives the value of k0.

The value of k0 must represent all the external effects (influ-
ences other than those stemming from the molecule’s
structure) on the magnitude of rotation. These include tem-
perature, solvent, wavelength of the polarized light and other
factors. Therefore, the value of k0 should be approximately
constant for a series of chiral molecules when the tempera-
ture, solvent, and light wavelength used to determine the
specific rotation are fixed. The direction of rotation is pre-
dicted by the sign of the calculated det(D). Moreover, if
the model is a reasonable approach, then the magnitude
and direction of the specific rotation of other molecules
should be predicted from the calculated values of their
det(D) after obtaining the value of k0 from an initial series
of molecules. One measure of this model’s success is how
close to a single constant the calculated values of k0 are
when the calculated values of det(D) are divided into the ex-
perimental values of [a]D for a series of chiral molecules
with different structures. The degree of structural variation
between the series of molecules used to define k0 and the
range of molecules, where the calculated value of det(D)
gives a good estimate of the specific rotation’s magnitude,
is another measure of the model’s success.

While this method is completely general, the input values
may be based on quantum-mechanical calculations or classi-
cal values. It is necessary to understand the errors, which will
be encountered where quantum effects are neglected. The in-
teraction time of a photon passing through a molecule is very
short (about 5�10�18 s, 0.005 fs, if this molecule has a 15 Å
diameter or 1�10�18 s for a diameter of 3 Å length). The
movement of a whole molecule in solution is very slow
(e.g., 0.2 cm/s), so the velocity uncertainty of 2-butanol,
for example, is 13% of the 0.2 cm/s if specifying the atom’s
position in the molecule to 0.05 cm. Compared with the be-
havior of entire molecule in solution, the uncertainty of an
atom’s velocity within a molecule, Dn, is about 105 cm/s,
which is almost the same as that of atom’s vibration speed
when specifying the atom’s position in the molecule to
10�8 cm. Quantum effects on atoms should be considered.
The mass and size of an electron are much smaller than those
of an atom, and its velocity is faster than an atom’s. The
quantum effects on an electron should also be considered.
Thus, a new model should consider two factors: (1) the entire
molecule’s behavior in solution; and (2) the position of the
atoms in a molecule, namely, the different conformations.
Since quantum effects from factor (1) are not big, the
variables of quantum mechanics could be replaced by other
variables. In the matrix model, these are the comprehensive
mass and radius of the substituents (see the next part). Only
these contributions from factor (2) need to be carefully
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investigated. The atomic positions in a molecule (different
conformations) can be investigated using quantum theory.
Different molecular conformations, in this model, reflect
the various magnitudes of the comprehensive masses and
radii (these terms are carefully defined in Section 3: Discus-
sion of the substituent’s elements). These quantities finally
influence the magnitude and direction of different optical
rotations.

A typical flexible chiral molecule, 1, was selected, which
contains one stereogenic center to illustrate the deduction
of the matrix model step by step as shown below. However,
this method can be extended to molecules with two or more
stereogenic centers, stereogenic ring systems, and chiral
compounds, which do not have one or more stereogenic
centers, such as allenes, in computations of optical rotations
(see dual-stereogenic-center molecule, found near the end
section of this paper).

C

R4

R2
R3

R1

1

The major factors that affect the specific optical rotation of 1
include

1. The comprehensive mass (m) of the substituents
(depend on conformations, details in Section 4.1). The
value of (m) changes with different conformations.

2. The radius (r) of the substituents (depends on conforma-
tions; details in Section 4.2).

3. The electronegativity (c) of the atom connected with
stereogenic center.

4. The symmetry (s) of the substituents. A new factor
which has never been considered in previous methods.

5. The solvent and temperature.
6. The concentration (c) of the solution.
7. The wavelength (l) of the light used to determine

specific rotation value.
8. The hybridization (h) of the atom constituting the stereo-

genic center and that of the atoms directly or indirectly
attached to the stereogenic center atoms.

Each of these factors could effect the specific optical rota-
tion. This model considers the external factors, such as the
solvent, temperature, and the wavelength of light, and inter-
nal factors of a chiral molecule. External factors are those,
which can be changed by artificial actions, such as the
concentration of solution, the wavelength, and temperatures
employed. The molecular (internal) factors such as compre-
hensive mass and electronegativities are independent. The
hybridization, for example, is related to the comprehensive
mass and radii (see Section 4). In the list of factors above,
four major internal factors were identified and used after
an independent analysis. These four independent internal
factors were comprehensive mass, radius, electronegativity
and symmetry number. Their contribution to the optical
rotation can be written as a set of functions f1, f2, f3, and f4.
The bracket is the mathematical symbol illustrating that
these functions are linked closely by belonging to the
same group.
f1 ¼ a1m1þ a2r1þ a3c1þ a4s1

f2 ¼ a1m2þ a2r2þ a3c2þ a4s2

f3 ¼ a1m3þ a2r3þ a3c3þ a4s3

f4 ¼ a1m4þ a2r4þ a3c4þ a4s4

8>><
>>:

Here a1–a4 (where a1sa2sa3sa4) are weighting factors
for each of the matrix element, which represent the mag-
nitudes of effects exerted by the mass, radius, electro-
negativity, and symmetry of the substituents, respectively,
on the functions f1–f4. Each coefficient’s value is different
and constant but their values are unknown at the present
time.

When photons of light with a frequency (n) interact with
each of four substituents of the chiral molecule (one confor-
mation), the function F1 is generated:

F1 ¼ f ðnÞ

2
664

f1

f2

f3

f4

3
775 ð1Þ

This matrix function expresses the interaction of the photons
with the four characteristics (elements) of all four substitu-
ents simultaneously (one conformation). Similarly, the
functions, F2, for the specific solvent employed, F3, for the
temperature, and others could be written in the same form
as Eq. 1.

F2 ¼ f ðsÞ

2
664

f1

f2

f3

f4

3
775 and F3 ¼ f ðtÞ

2
664

f1

f2

f3

f4

3
775

The overall function which describes the interaction of light
with the chiral molecule for this conformation can then be
described as Fconi

Fconi ¼ F1þF2þF3 þ/

where

Fconi ¼ f ðnÞ

2
664

f1

f2

f3

f4

3
775þ f ðsÞ

2
664

f1

f2

f3

f4

3
775þ f ðtÞ

2
664

f1

f2

f3

f4

3
775þ/ ð2Þ

The functions of solvent and temperature on the optical
rotation are unknown, and the function f(n) can be fixed.
Thus, the formula would have the following form:

½a�lff ðnÞf l2
ns

l2� l2
ns

Here l and lns are the wavelengths when the unperturbed
energies are in ground and excited states, respectively.



2296 H.-J. Zhu et al. / Tetrahedron 63 (2007) 2292–2314
If solvent, temperature, and other determined conditions are
fixed, the functions f(s) and f(t) and others will be constant.
Eq. 2 becomes

Fconi ¼
knl

2
ns

l2� l2
ns

2
664

f1

f2

f3

f4

3
775þ ks

2
664

f1

f2

f3

f4

3
775þ kt

2
664

f1

f2

f3

f4

3
775þ/ ð3Þ

where kn, ks, and kt are constants.

Each conformation has a specific energy and the population
of that conformation versus those of all molecules in the
sample is determined by the Boltzmann distribution. The
optical rotation of each specific conformation must be
multiplied by the fraction of molecules in those respective
conformations. The sum over all the conformations gives
the net optical rotation, F.

F¼
X�

Fconi

��
Qi=
X

Q
�

Here Qi¼k exp(�DGi/RT), Qi is the amount of the ith
conformation, k and R are constants, DGi is the difference
between ith conformation’s free energy and the lowest con-
formational free energy. Thus, theoretically, other elements
could also be added into Eq. 4 to determine the specific
studies.

In this manuscript, the effects from the outside factors, such
as solvent, temperature or light are not studied. These exter-
nal factors were fixed. When the frequency of light is kept
constant (e.g., at the sodium D line) and other external fac-
tors (temperature, solvent) are constants, the overall function
Fconi for this selected conformation becomes

Fconi ¼ ðk1þ k2þ k3þ/Þ

2
664

m1 r1 c1 s1

m2 r2 c2 s2

m3 r3 c3 s3

m4 r4 c4 s4

3
775

2
664

a1

a2

a3

a4

3
775 ð4Þ

where k1¼f(n), k2¼f(s), k3¼f(t). Therefore, the expression
for Fconi becomes

Fconi ¼ k

2
664

m1 r1 c1 s1

m2 r2 c2 s2

m3 r3 c3 s3

m4 r4 c4 s4

3
775

2
664

a1

a2

a3

a4

3
775 ð5Þ

where k is the sum of all the constants (e.g., k1+k2+k3+/).
The total contribution F from all conformations can be
written in the form of Boltzmann distribution.

F¼
X
ðFconiÞ

�
Qi=
X

Q
�

Eq. 5 shows that the contributions of all the factors to the
optical rotation of one conformation contain three parts:
(1) external factor contributions: f(n), f(s), f(t)., (2) the
center matrix which combines only the specific internal
molecular characteristics, and (3) the matrix on the right (the
coefficient matrix) which presents the magnitudes of the
contributions of the different weighting factors to the optical
rotation. The values for a1, a2, a3, and a4 cannot yet be ob-
tained. This coefficient matrix should be positive. When
all of the outside factors are held constant, Eq. 3 can then
be transformed to Eq. 5.

Now, function F, which expresses the various effects of both
internal and external factors on the optical rotation’s magni-
tude and direction of this selected conformation, has been ob-
tained. This function F contains all the information needed,
including three contributions: (1) external factors’ contribu-
tions; (2) the molecule’s characteristic contributions and (3)
the weighting factors’ contributions. However, F contains
a matrix within the function, so it is not a scalar number.
Thus, we define [a]¼jFj. Also, the sodium D line is used to
obtain the optical rotation. Then, one conformation has

½a�Di
¼ k� a1� a2� a3� a4 � detðDiÞ ¼ k0� detðDiÞ ð6Þ

where

detðDiÞ ¼

��������

m1 r1 c1 s1

m2 r2 c2 s2

m3 r3 c3 s3

m4 r4 c4 s4

��������
ð7Þ

The different conformations of chiral molecule have differ-
ent energies. Thus, the final observed optical rotation must
employ the Boltzmann distribution of all these conforma-
tions.

detðDÞ ¼
X
ðdetðDiÞÞ

�
Qi=
X

Qi

�

It is impossible to get a1, a2, a3, and a4 and k values at this
point. Therefore, there is no absolute value to [a]. However,
it is useful to obtain the relative values by computing det(D)
since det(D) is characteristic of that molecule and propor-
tional to the optical rotation values when the outside factors
are kept constant. Herein, we will carefully analyze the mag-
nitude of det(D). These values represent relative optical ro-
tation values, which are different from those obtained by
quantum chemistry methods.

Input values to this general matrix model could be computed
by quantum calculations or employ classical bond lengths
and angles. All such input data have their own errors.
Thus, we will apply standard structural data from handbooks
for the computation of det(D) and then test this model by
comparing these computed det(D) data with experimental
results. The DFT method (B3LYP/aug-cc-pVDZ//B3LYP/
6-31G*) has proved useful and economic in computations
of chiral rigid compounds. Therefore, this DFT method
was also used as a comparison standard to evaluate the
matrix model. Furthermore, chiral molecules’ optical rota-
tions obtained by matrix were compared with experimental
results.
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Obviously, det(D) represents the molecule’s characteristics
in this matrix model. It has nothing to do with external fac-
tors, such as the solution concentration, the wavelength of
light, the temperature, etc. Substituent R4 of the chiral mol-
ecule 1 is defined as the smallest group in the determinant.
The definition for the biggest or smallest groups in a chiral
molecule is exactly the same as those used to define (R) or
(S) absolute configurations. In a Newman structure, 2, R4

is the circle to the rear and R1, R2, R3, and R4 are the four
different substituents bound to the stereogenic carbon of 1.

R1

R2R3

2

The values for the elements of R4, the smallest group, are
first introduced into the bottom line of the determinant.
Then, the corresponding values for the elements of the other
R groups are introduced into the determinant, from the top
down, in the order with which these R groups appear in
the clockwise direction in the Newman structure. This deter-
minant, det(D), is written as shown in Eq. 7. The calculated
det(D) value may be either positive or negative, indicating
the direction of the specific rotation.

Alternatively, the values of the elements of the largest sub-
stituent can be introduced into the first line in the determi-
nant. Then the corresponding values for the other
substituents’ elements are added as the second, third, and
bottom lines, respectively. This determinant is designated
det(D0). Then, a positive sign (+) is selected for [a]D when
the direction of a rotational arrow, drawn from R1 to R2 to
R3, is clockwisewhile looking down the bond from the stereo-
genic atom to the R4 group, in accordance with the general
and widely used empirical rule. When this arrow is counter-
clockwise, the negative sign (�) is selected.

½a�D¼ ð� Þk0detðD0Þ ð8Þ

The result of this procedure (Eq. 8) will be the same as that of
using det(D) (Eq. 7). This result can also be deduced from the
Newman structure 2 by transposition of lines in det(D) to
det(D0). First, det(D) is written according to the clockwise
direction of the groups R1, R2, and R3. Then the rows of the
determinant are transposed until the elements of the highest
priority substituent are on the first line, and those of the
second and third highest priority groups are on the second
and third lines, respectively. A new determinant det(D0) is
obtained after this rearrangement. Thus, det(D0) equals
det(D0).

There are six possible relationships among the sizes of sub-
stituents, R1, R2, and R3. The two possible results for each of
these six cases are listed in Table 1 together with the trans-
positions employed in det(D). The empirical rule here has
been well explained by this model directly.

The chiral molecule can also be placed in a three-dimensional
coordinate system with the chiral center at the origin and the
smallest group, R4, along the Z-axis. The groups R1, R2, R3,
and R4, which are considered to be perfect point masses (e.g.,
single atoms) have the corresponding coordinates: C1(x1, y1,
z1), C2(x2, y2, z2), C3(x3, y3, z3), and C4(x4, y4, z4). Next, three
new determinants, det(Dx), det(Dy), and det(Dz) are formed
by projecting the matrix elements from det(D) onto the X,
Y, and Z-axes. From the projected values, det(Dx), det(Dy),
and det(Dz) are obtained. Since substituent R4 is located at
the origin (x4¼y4¼0), all the projected values for the ele-
ments of R4 on the X and Y axes are zero. This implies that
the contributions to the optical rotation can also be repre-
sented with det(Dz), the determinant of the elements of sub-
stituents R1, R2, R3, and R4, which is projected on the Z-axis.
Obviously, when there are four different atoms connected to
the stereogenic center, this molecule does not have a standard
tetrahedron’s geometry. Thus, det(Dz) can accurately reflect
the characteristics of molecular optical rotation (see Section
5). However, if the four connected groups are complex sub-
stituents, the use of det(Dz) may result in bigger errors than
for det(D) due to the second processing of data.

3. Discussion of the substituent’s elements

When two or more of the substituents are identical, the cor-
responding values of r, m, c, and s will be the same. Then
the value of det(D) must be equal to zero. In this case, the
molecule has no dissymmetry. Hence its specific rotation
is zero.

detðDÞ ¼

��������

m1 r1 c1 s1

m2 r2 c2 s2

m3 r3 c3 s3

m4 r4 c4 s4

��������
¼ 0
Table 1. The six cases possible from the rearrangement of det(D)

Six cases Newman projection
arrow directions

[a]D¼�k0 det(D0) Transposition in det(D) employed [a]D¼k0 det(D)a

R1>R2>R3 Clockwise k0 det(D0) No transposition k0 det(D0)
R1>R3>R2 Counterclockwise �k0 det(D0) L1 and L3b �k0 det(D0)
R2>R1>R3 Counterclockwise �k0 det(D0) L1 and L2 �k0 det(D0)
R2>R3>R1 Clockwise k0 det(D0) L1 and L2, then new L1 and L3 k0 det(D0)
R3>R1>R2 Clockwise k0 det(D0) L1 and L3, then new L1 and L2 k0 det(D0)
R3>R2>R1 Counterclockwise �k0 det(D0) L1 and L3 �k0 det(D0)

a det(D)¼det(D0) in the three cases where R1>R2>R3, R2>R3>R1, and R3>R1>R2; det(D)¼�det(D0) in the three cases where R1>R3>R2, R2>R1>R3, and
R3>R2>R1; det(D0)¼det(D0).

b Here L1, L2 and L3 mean the first, second, and third lines in the determinant det(D), respectively.
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When the positions of any two substituents (e.g., R1 and R2)
are changed, then the following determinant results.

detðD0Þ ¼

��������

m2 r2 c2 s2

m1 r1 c1 s1

m3 r3 c3 s3

m4 r4 c4 s4

��������
¼�

��������

m1 r1 c1 s1

m2 r2 c2 s2

m3 r3 c3 s3

m4 r4 c4 s4

��������
¼�detðDÞ

The specific rotation’s direction is now reversed. Thus, in
a racemate, the specific rotation will be zero.

When a molecule has two or more stereogenic carbons, the
det(Di) values of each different stereogenic center would
be calculated. If a compound has n stereogenic centers,
then its net optical rotation will be the sum of each stereo-
genic center:

detðD1Þ þ detðD2Þ þ/þ detðDnÞ ¼
X

detðDiÞ

A positive or negative value of det(D) designates the direc-
tion of rotation for that specific configuration. In a molecule
with multiple stereogenic centers, the positive or negative
value of the sum of all det(Di) determines the direction of
rotation. For meso compounds, such as meso-tartaric acid,
det(D2) and det(D3) for stereogenic carbons C2 and C3 are
given below, respectively, where c2g represents the substitu-
ent C2H(OH)CO2H and c3g represents the substituent
C3H(OH)CO2H in these expressions. This det(D2) is written
using the clockwise order of –OH, –c3g, and –CO2H, as
shown below.

COOH

H OH
H OH

COOH

2
3 meso -tartaric acid  1 det(D2) =

mOH
mCOOH
mc3g
mH

rOH
rCOOH
rc3g
rH

OH

OH

OH

OH

sOH
sCOOH
sc3g
sH

We can write det(D3) in the same way. Since the values of m,
r, s, and c are the same for c2g and c3g, det(D3) can be written
as illustrated below

detðD3Þ ¼

��������

mOH rOH cOH sOH

mc2g
rc2g

cc2g
sc2g

mCOOH rCOOH cCOOH sCOOH

mH rH cH sH

��������

¼�

��������

mOH rOH cOH sOH

mCOOH rCOOH cCOOH sCOOH

mc2g
rc2g

cc2g
sc2g

mH rH cH sH

��������

¼�

��������

mOH rOH cOH sOH

mCOOH rCOOH cCOOH sCOOH

mc3g
rc3g

cc3g
sc3g

mH rH cH sH

��������
¼�detðD2Þ

Therefore

X
detðDiÞ ¼ detðD2Þ þ detðD3Þ ¼ 0

and the specific rotation of meso-tartaric acid is zero.
As the bond angles bend, the values of the groups R1, R2, and
R3 along the Z-axis change. Thus, the determinant det(Dz)
changes when R1, R2, R3, and R4 are considered to be perfect
point masses. That means the magnitude of optical rotation
for a chiral molecule would change when the bond angles
about the stereogenic atom changes.

There is little difference in electronegativity or symmetry
from group to group when all four R groups are linear ali-
phatic functions with similar group lengths. In such cases,
the magnitude of optical rotation will be small, and in
some cases too small to be readily measured.

4. Sample calculations

Matrix theory is a general method in mathematics, widely
used in many research areas when different variables are
used. It is a useful tool for scientists to dissolve different ac-
ademic problems although, in many cases, the linkage be-
tween the matrix theory and the target studied is not clear.

After setting up the matrix model for optical rotation, it is
critical to provide accurate values for the variables (ele-
ments) to compute optical rotation. If the variables cannot
have suitable magnitudes, no matter how reasonable the de-
duction is, this model will fail. Therefore, to reasonably
quantitate the variables and let the four variables work
well in matrix model become an arduous and important
task. These definitions for the four variables and their mag-
nitude computations are described below.

4.1. Comprehensive mass m

The use of mass has a long history in the optical rotation
computations.1c,d,6a Atoms in different positions within the
substituents have different degrees of contribution to the
specific rotation. If the atom is directly connected to the ste-
reogenic center, its coefficient is b1. Coefficients of the other
atoms, which are further removed are b2, b3, and so on. Thus,
the comprehensive mass of the substituent group becomes

m¼ b1m1þ
X

b2m2þ
X

b3m3þ
X

b4m4þ/

Here, m1 is the mass of atom 1, which is directly connected
to the stereogenic center and m2 is the mass of atom 2, which
is directly bound to atom 1. Since more than one atom can be
bonded to atom 1, the summation term is used to indicate
that the contributions of all these atoms must be included.
This is also true for each of the substituent atoms, which
are one step further removed from the stereogenic center.
The term b1 is the coefficient for m1, b2 is the coefficient
for m2 and bn is the coefficient for mn.

As mentioned earlier, quantum effects on atoms’ positions
within the molecule (different conformations) should be con-
sidered. Quantum effects would affect the substituent’s con-
formation. This causes the changes in comprehensive masses
(m) and radii (r). Thus, the comprehensive mass and radius
values could be evaluated by quantum mechanics (HF or
DFT methods). In this paper, we have used the standard
data for computations of det(D) and then test this model by
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comparing these computed det(D) data with experimental
results. Furthermore, two examples to show the effect of dif-
ferent conformations on det(D) values are presented in the
subsection ‘The effect of the radius of the substituent on
the optical rotation’ found in the discussion section.

The method to compute the comprehensive masses and radii
is described below.

The calculation of each bi value is now shown for the n-pro-
pyl group as a simple example (see Fig. 1). In this model, the
coefficients of the masses are related to reciprocal volume.
The values of bi are defined as being proportional to the recip-
rocal of the volume swept out by that specific mass. Atoms
attached further from the stereogenic center sweep out larger
net volumes about that stereogenic center. Hence, the value
of bi will decrease if an atom is far from the stereogenic cen-
ter since the reciprocal of the volume decreases. As can be
seen in Figure 1, C1 (Fig. 1) is directly bonded to the stereo-
genic atom. C1 is at the center of the sphere.

The average unit volume of the C1 atom is

1=v1 ¼ 1=
�
4pr3

1=3
�
¼ 1� 3=

�
4� 3:14� 0:773

�

¼ 0:5232
�

�A
�3�

where r1 is the radius of an sp3-hybridized carbon.

C2 and C3 also sweep out volumes around the C1 center dur-
ing rotations of both the C1 to stereogenic atom bond and the
C1–C2 bonds. Their average unit volumes can be calculated,
respectively, as above.

1=v2 ¼ 1=
�
4pr3

2=3
�
; r2 ¼ 1:54

�
�A
�3�

1=v2 ¼ 0:06538
�

�A
�3�

and 1=v3 ¼ 1=ð4pr3
3=3Þ, where r3¼(1.542+1.542�2�1.54�

1.54�cos 109)1/2¼2.51

1=v3 ¼ 0:01516
�

�A
�3�

Here, r3 is distance AC in Figure 1.

The bi values are defined as being proportional to the respec-
tive calculated reciprocal volumes, 1/vi.

A

B

C

(a) (b)

C1
C2

C3

Figure 1. n-Propyl model used for the calculation of its bi value. Plot b is the
simplified geometry for calculating the distance from C1 to C3.
b1:b2 :b3 ¼ v�1
1 :v�1

2 :v�1
3 ¼ 0:5232 :0:06538 :0:01516

¼ 1 :0:125 :0:029

Therefore, the mass contributions of C2 and C3 to the
specific rotation are 0.125 and 0.029 times that of C1,
respectively. This calculation for a carbon bonded to C3
(e.g., C4) results in a value of b4, which is only 0.008 that
of b1. Different elements have different values of bi and
the same elements will have different bi values when they
are in different states of hybridization (see Section 2). The
values of bi also change with different conformations. A
few example bi values are calculated and listed in Table 2.
For example, the comprehensive mass of the CO2H group
is estimated, as shown below, keeping in mind the two oxy-
gen atoms (C]O, C–OH) have to be treated separately.

m¼ 12� 1þ 0:156� 16� 2þ 0:114� 16¼ 18:7

Some comprehensive masses of simple groups, calculated in
the simple manner described above, are summarized in
Table 3. There are many ways that the reciprocal volumes
for any given function can be determined. Whatever method
is selected, that procedure should be applied consistently to
each molecule considered.

4.2. Radius r

The radius is defined, herein, as the smallest contact radius
of the substituent when that substituent is in a stable confor-
mation. We use the traditional method to obtain their magni-
tudes. The substituent’s r value can be estimated by its
geometry or it can be set equal to its Van der Waal’s radius.
Some example cases are now discussed.

(1) The methyl group’s r value is taken as that group’s Van
der Waal’s radius (e.g., 2.0 Å).30 The r radius of an ethyl
group is also its group Van der Waal’s radius. This is ap-
proximated as the distance from the center of the ethyl
group’s carbon–carbon single bond to a methyl hydrogen
plus an additional 0.8 Å.31 For other alkyl groups, the
Van der Waal’s radii may be estimated by the distance
for the group’s center of mass to the outer hydrogen
plus 0.8 Å.

(2) The Van der Waal’s radii of simple aromatic rings, such
as phenyl or furan rings are approximated as 1.7 Å.

(3) If a heavy atom is linked to one or two light atoms, such
as in –OH and –NH2, the radius used in this manuscript
is simply regarded as the large atom’s Van der Waal’s
radius. For complex substituents, the value of r could be
calculated by its actual geometry. The radii for selected
substituents were calculated and summarized in Table 2.

Table 2. Sample bi values calculated for substituents (b1¼1.0)

Substituent bi Substituent bi

–CH2CH2CH3 C–C: b2¼0.125,
b3¼0.029

–CH3 C–H: b2¼0.33

–Phenyl b2¼0.125, b3¼0.024,
b4¼0.0156

–C(sp3)–C]C– b2¼0.024,
b3¼0.0135

–CO2H C]O: b2¼0.156,
C–O: b2¼0.114

–C(sp3)–O–C(sp3) b2¼0.162,
b3¼0.033

–C(sp3)–N< b2¼0.144 for N –C(sp3)–OH b2¼0.166
–C(sp2)]N– b2¼0.137 for N –C(sp3)–S– b2¼0.077
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Table 3. Values of m, r and s for some selected substituents

R m r (Å) c s R m r (Å) c s

–CH3 13.0 2.0 2.5 0.44 –NH3
+ 15.0 1.5 3.8 0.44

–C2H5 13.6 2.2 2.5 0 –CO2H 18.7 1.7 2.7 0
–n-Pr 14.0 2.2 2.5 0 –CO2Me 19.2 2.7 2.8 0
–n-Bu 14.1 2.2 2.5 0 –CONH2 18.5 1.6 2.7 0
–n-C5H11 14.2 2.9 2.5 0 2-Furyl 18.1 1.7 2.7 0
c-C6H12 16.4 2.4 2.5 0 –Ph 18.9 1.7 2.7 0.25
–i-Pr 15.6 2.3 2.5 0 4-Cl–Ph 19.0 1.8 2.7 0.25
–CMe3 16.9 2.8 2.5 0.44 4-Me–Ph 18.9 1.7 2.7 0
–i-Bu 14.9 2.0 2.5 0 2-Br–Ph 20.1 1.95 2.7 0
–OH 16.3 1.4 3.5 0 1-Naphthyl 20.0 1.7 2.7 0
–OMe 17.3 2.3 3.5 0 2-Naphthyl 19.2 1.7 2.7 0
–OAc 19.9 2.9 3.5 0 3-Pyridyl 18.8 1.7 2.7 0–0.25
–NH2 14.7 1.5 3.0 0 4-Pyridyl 19.0 1.7 2.7 0.25
–C^C 16.5 1.5 3.0 0.25 PhCH2]CH– 15.7 2.0 2.8 0
–NCO 17.7 1.5 3.5 0 PhCH2CH2– 14.7 3.6 2.5 0
–CN 17.8 1.45 3.2 0.25 –H2PO3 45.9 2.4 2.1 0
–CH2Cl 15.6 1.8 2.5 0 –I 127 2.5 2.5 1
–CH2OH 15.2 2.1 2.6 0 –Br 80.0 1.95 2.8 1
–CH2Br 17.7 1.95 2.5 0 –Cl 35.5 1.8 3.0 1
–CH2CN 18.1 2.9 2.5 0 –F 19.0 1.35 4.0 1
–NHMe 15.6 2.2 3.0 0 –H 1.0 1.2 2.1 1
–NMe2 16.6 2.3 3.0 0 –D 2.0 1.2 2.1 1
The effect of solvent on each substituent is different. Further-
more, the radius of a specific group can change in a different
solvent. Chiral molecules, with very small rotation values,
may undergo a change in the direction of rotation from
positive to negative (or the reverse) due to small changes
in the value of substituent radii. Nevertheless, most chiral
compounds have large enough specific rotation values that
these small errors are negligible. Thus, it is possible to use
either the calculated radii or Van der Waals radii in this ma-
trix model. Polar compounds can have strong intermolecular
interactions with each other as their concentration increases,
which may induce small changes in the values of substitu-
ents’ radii. Thus, the direction of the specific rotation may
change if the original value of the rotation was close to
zero. In the matrix model, the effects of the solvent, temper-
ature and concentration are mostly due to changes in the size
of the substituents in solution. Holding solvent and temper-
ature as constant, eliminates these effects when predicting
specific rotations for a series of molecules.

The predictions of this matrix model are very sensitive to the
geometries employed. Ideally, exact experimental geome-
tries of rigid molecules should be used when they are avail-
able. The most difficult aspect of our model involves
conformationally flexible molecules, where each conforma-
tion that contributes some fraction of that molecule’s popu-
lation. Each conformation contributes to the net optical
rotation. It would be ideal to establish the exact geometry
and the precise fraction present for each conformation.
This is a major task and this will be essential in further
work to apply this model to increasingly complex molecules
in the future. For now, we have employed simple geometric
models to illustrate the method.

4.3. Electronegativity c

The effect of electronegativity on the specific rotation is
large. In the matrix model, Pauling electronegativities are
used throughout unless stated otherwise. Atom or group
electronegativity32 has been used. When the stereogenic
atom is carbon, carbon’s electronegativity value is used
directly. When the stereogenic atom is not carbon, the calcu-
lated det(D) should be multiplied by the ratio cc/cy, where
cc is carbon’s electronegativity and cy is the stereogenic
atom’s electronegativity.

4.4. Symmetry s

The symmetry factor, s, represents the space group operation
that is widely used to analyze the molecular structure and
chirality. Early studies used the term ‘atomic asymmetry’
to calculate and understand optical rotation.6a,b Herein we
quantitate this term, symmetry, and use these values in our
model. If one substituent has the highest symmetry operation
number N, and this symmetric axis passes through the atom
which is connected to the stereogenic atom, then the symme-
try factor for that substituent is

s¼ ½ðN� 1Þ=N�2

Values of s for selected substituents are listed in Table 3.

This model needs a chiral molecule having at least one sym-
metric group for its optical rotation computation, such as
a single atom, H, Cl, or a group, e.g., –CH3, –Ph, –CCl3. If
there is no symmetric group connected to the stereogenic
center in a chiral molecule, this model would predict its op-
tical rotation values as zero. For example, 5-ethyl,5-propyl-
undecane and some glycerides,9e,f,k,l have asymmetric
centers. However, their optical rotation values are zero. An
example may exist in which a chiral molecule has no
symmetric group connected to the stereogenic center has
a definite optical rotation value. Therefore, one should be
careful to use this model to predict these chiral molecules’
optical rotations.

Calculations of the specific rotation of 90 example com-
pounds, in which specific interactions among the four sub-
stituents (cross products) are not considered, were carried
out by determining the values of the four factors, m, r, c,
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and s, for these substituents. These values were put into
det(D). After determining the value of det(D) for each exam-
ple molecule, the value of k0 was obtained by dividing the
experimental value of the specific rotation, [a]D, of the opti-
cally pure enantiomer by the value of det(D).33 If the matrix
model represents a reasonable method to predict the magni-
tude and direction of specific rotation, then the value of k0

should be approximately constant when obtained for differ-
ent chiral compounds with similar structure in the same sol-
vent (and at the same temperature and light wavelength).
This would demonstrate that the value of det(D) was propor-
tional to the magnitude of the specific rotation. The deviation
of such k0 values represents a measure of how well the model
works. This premise is tested in Table 4 where the calculated
values of det(D), the experimental values of specific rotation
(using the sodium D line), the solvent and the calculated k0

values of 90 molecules are summarized.
5. Results and discussion

5.1. Calculated k0 values in same series of compounds

Experimental optical rotations were obtained on eight alco-
hols (1–8) (Table 4) and the values of det(D) were calculated.
The values of k0 were determined from the calculated values
of det(D) and the experimental values of [a]D. These values
(0.59, 0.87, 0.40, 0.35, 0.48, 0.78, 0.64, and 0.76, where the
average value is 0.61) are remarkably similar considering the
many assumptions used in the model, the use of only four
elements (substituent characteristics) and noticing that all the
experimental [a]D values were reported by different research
groups. The k0 values of compounds 20–23 measured in
methanol are 6.60, 5.73, 5.20, and 6.04, respectively. The
measured rotation of 20 is almost the same in EtOH as in
MeOH. Thus, the k0 values of compounds 16–19 (4.64,
Table 4. Calculated values of det(D), experimental and computed [a]D values (by DFT methods) of specific rotation and the values of k0 from [a]D/det(D) for
ninety example molecules34

Molecule no. Structure det(D) [M]/k0 [a]D (determined) k0 [a]D

(DFT)a
Ref.

1
Et Me

OHH
+16.16 +11.96 +9.57 (neat) 0.59 +53.1 33a

2

n-Pr Me

OH
H

+14.98 +13.18 +13 (neat) 0.87 +70.5 33b

3

Me

Me
Me

OHH

�12.10 �10.55 �4.9 (neat) 0.40 +44.5 33c

4
n-C5H10Me

OHH
�27.18 �31.53 �9.5 (neat) 0.35 — 33d

5
Me

OH
H

�11.57 �14.81 �5.6 (neat) 0.48 +55.85 33e

6
Ph

OH
H Me

Me

�31.43 �47.15 �24.6 (neat) 0.78 �11.7 33f

7

Phn-Bu

OHH
+31.23 +51.22 +20 (neat) 0.64 +77.9 33g

8

n-BuMe

OHH
�14.46 �14.75 �11 (neat) 0.77 �9.03 33h

9

Me
Me
Me

Me

OH
H

+3.13 +3.19 +8.14 (neat) 2.60 �22.61 33i

(continued)



2302 H.-J. Zhu et al. / Tetrahedron 63 (2007) 2292–2314
Table 4. (continued)

Molecule no. Structure det(D) [M]/k0 [a]D (determined) k0 [a]D

(DFT)a
Ref.

10 O
Me

OHH
+4.95 +5.74

+10.25
(neat, l¼0.5)

2.07 +13.8 33j

11

S
Me

OHH
�4.36 �5.58

�23.7
(neat, l¼1)

5.44 + 54.14 33k

12
EtMe

NH2H �11.02 �8.04 �7.5 (neat) 0.68 �55.5 33l

13 Me

NH2H

�8.17 �10.31 �4.0 (neat) 0.49 +13.0 33m

14 NCO

H Me
+13.81 +20.30 +10.5 (neat) 0.49 �51.4 33n

15 Me

H NH2

+11.87 +14.36 +38 (neat) 3.12 +74.8 33o

16
Me

OHH
+8.19 +14.09 +38 (EtOH) 4.64 +22.2 33p

17 Et

OHH
+4.97 +8.15

+24.7 (EtOH)
92% ee

5.40 +2.2 33q

18
Ph CH2NH2

H Me
+5.28 +7.13 +35 (EtOH) 6.63 �29.3 33r

19 Me

OH
H

+10.55 +18.15 +78 (EtOH) 7.39 +69.5 33s

20
Me

H2N

H �8.81 �15.06
�55 (EtOH) 6.24 �118.7 33t�59 (MeOH) 6.60

21

N
Me

OHH

�7.01 �9.46 �40.2 (MeOH) 5.73 �130.2 33u

22

Me2N
H Me

�8.27 �16.46 �43 (MeOH) 5.20 — 33v

(continued)



2303H.-J. Zhu et al. / Tetrahedron 63 (2007) 2292–2314
Table 4. (continued)

Molecule no. Structure det(D) [M]/k0 [a]D (determined) k0 [a]D

(DFT)a
Ref.

23 Me
H

NMe2

+8.31 +12.38 +50.2 (MeOH) 6.04 +68.7 33v,w

24
Et

H OH

+5.98 +8.49 +8.1 (CHCl3) 1.45 �6.36 33x

25
Et

OHH
�32.16 �43.74 �45.6 (CHCl3) 1.42 �105.5 33y

26

O
Et

OHH
�18.96 �23.89 �17.9 (CHCl3) 0.94 �86.0 33z

27 Et

OHH
�5.14 �8.33 �5.94 (HCl3) 1.16 — 33aa

28
Ph n-Pr

OH
H �31.41 �47.12

�45.2 (PhH) 1.44
— 33ab�48.6 (CHCl3) 1.55

29
CN

OHH
+7.06 +9.39 +42 (CHCl3) 5.95 +0.6 33ac

30
CN

OHH

Cl
+8.81 +14.76 +39 (CHCl3) 4.43 +51.8 33ad

31

p-Tol CN

OHH
+9.28 +13.64 +39 (CHCl3) 4.20 +72.1 33ae

32
Ph

OHH

Me

Me
Me

+30.64 +50.25 +25.9 (PhH) 0.85 +64.5 33af

33 Me

OHH
+15.41 +18.80 +43.1 (c-C5H10) 2.80 +130.7 33ag

34
Ph CH2Cl

OH
H

�16.52 �25.85 �48 (c-C6H12) 2.90 �82.2 33ah

35 Si
Ph

Me

H
+5.90 +14.63 +35 (c-C6H12) 5.93 — 33ai

36
n-C5H11

OHH
�29.53 �37.21 �22.38 (ether) 0.76 — 33aj

(continued)
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Table 4. (continued)

Molecule no. Structure det(D) [M]/k0 [a]D (determined) k0 [a]D

(DFT)a
Ref.

37 Me

Me

OHH
�18.58 �18.21

�15.4 (ether) 1.45
�109.5 33aj�9.1 57% (ee)

(dioxane)
0.86

38 HO2C

H OMe

+7.69 +12.76 +149 (EtOH) 19.4 +106.3 33ak

39
Ph CN

H OAc
+20.16 +35.68 +8.0 (CHCl3) 0.40 +7.6 33al

40

Cl
H

MeEt
+8.21 +7.59

+38.9 4.7
+24.0

33am,
21d+33.8 (neat) 4.1

41

ClH

Me
n-Pr

+8.06 +8.58 +43.2 5.3 +26.8 33am

42

CNH

MeEt
+12.64 +10.49

+30.7 2.43
+23.6

33am
+36.3 2.9 21d

43

CNH

Men-Pr
+11.79 +11.44 +50.5 4.28 +34.4 33am

44

CNH

Men-Bu
+11.57 +12.84 +45.9 3.97 — 33am

45

PhH

MeEt
+6.57 +8.80 +27.6 4.20 +52.4 33am

46

PhH

Men-Pr
+6.18 +9.15 +25.6 4.14 +25.4 33am

47

PhH

Men-Bu
+6.08 +9.84 +24.1 3.96 — 33am

48

Br
H

MeEt
+14.67 +20.09 +26.3 1.8 +23.5 33am

49

Br
H

Men-Pr
+14.73 +22.24 +41.7 2.8 +21.3 33am

(continued)
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Table 4. (continued)

Molecule no. Structure det(D) [M]/k0 [a]D (determined) k0 [a]D

(DFT)a
Ref.

50

BrH

DPh
�0.65 �1.11 +0.0035 �0.05 — 33am

51

PhH

DMe
+0.93 +1.02 +0.0068 0.07 — 33am

52

MeH

DEt
�0.21 �0.124 +0.0095 �0.45 — 33am

53
Ph

H

D

OH
+1.86 +1.73

+1.58
(c-C5H10)

0.85 — 33am

54

MeHOH2C

ClH
+16.24 +15.34 +17.5 (neat) 1.08 +11.4 33an

55

Et

CH2Br

H

Me
+3.36 +5.04 +4.5 (CHCl3) 1.34 +6.8 33ao

56

Br
OH

H Me
+6.27 +12.54 +54 (CHCl3) 8.61 +135.6 33ap

57
Me

OHH
�14.79 �10.20 �45 (neat) 3.04 �105.9 33aq

58

CN

H OAc

Ph
+14.34 +23.39 +44.0 (CHCl3) 3.07 — 33ar

59
CH2ClNCH2C

OHH
+8.24 +9.85 +11 (neat) 1.33 �38.5 33as

60

Cl

Ph

OHH

+2.80 +6.12 +16.0 (CHCl3) 5.71 — 33at

61
HO CONH2

H Me
�7.95 �7.08 �20.5 (H2O) 2.58 — 33au

62
H2N CH2OH

H
Me

+6.56 +4.92 +18 (neat) 2.74 — 33av

63
HOH2C

H NH2

+0.82 +3.98 +4.0 (EtOH) 4.88 — 33aw

(continued)
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Table 4. (continued)

Molecule no. Structure det(D) [M]/k0 [a]D (determined) k0 [a]D

(DFT)a
Ref.

64
CH2OHMe

H
OH

�10.26 �7.80 �15 (neat) 1.46 +58.6 33ax

65
HO2C Me

H OAc
�8.52 �11.25 �51 (CHCl3) 5.99 �27.7 33ay

66
ClOC Me

H OAc
�7.80 �8.97 �31 (CHCl3) 3.97 �58.3 33az

67
Ph CO2Me

H OH
�35.69 �59.25 �144 (CHCl3) 4.03 �187.7 33aaa

68

H Me

MeHN �9.79 �17.55 �89.0 (EtOH) 9.1 �126.7 33aab

69

EtIH2C

MeH
+1.75 +3.50 +5.7 (neat) 3.26 — 33aac

70
MeMeO2C

H Cl
�2.47 �3.01 �26 (neat) 10.5 �104.6 33aad

71

PhHOH2C

H
OH

�25.86 �35.71 �69 (CHCl3) 2.67 +107.1 33aae

72
H2N CH2OH

H CMe3
+9.78 +11.44 +37 (CHCl3) 3.78 +11.0 33aaf

73 Me

OHH

N

+15.71 +19.32 +55 (CHCl3) 3.50 +122.1 33aag

74
MeMe2NH2C

H OH
+21.82 +22.47 +27.0 (neat) 1.24 �144.4 33aah

75
PhHOH2C

H Me
�6.18 �8.40 �17 (neat) 2.75 +13.3 33aai

76
Ph CH2OH

NH2H
�17.53 �24.01 �31.7 (HCl) 1.81 — 33aaj

77

Ph CO2Me

H NH2

HCl

�28.29 �46.67 �118 (H2O) 4.08 —
33aaj,
aak

(continued)
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Table 4. (continued)

Molecule no. Structure det(D) [M]/k0 [a]D (determined) k0 [a]D

(DFT)a
Ref.

78
Me CO2Me

+NH3 Cl-H
�7.81 �8.04 �8.0 (MeOH) 1.02 — 33aal

79
BrH2C CO2Me

MeH
+2.19 +3.94 +16 (neat) 7.03 �24.3 33aam

80
CH2OH

NH3
+H

+0.92 (sNHþ
3
¼0:44,

cNHþ
3
¼3:70)

+1.39
+23
(1 N HCl)

25.0

�20.0 33aan
+2.8 (sNHþ

3
¼0:44,

cNHþ
3
¼3:80)

+4.22 8.21

+5.7 (sNH2
¼0,

cNH2
¼3.5)

+8.60 4.03

81 Ph N

H
Me O

O

+2.06 (sdopl¼0.25)b +4.14 +61 (EtOH) 29.6
+6.7 33aao

+6.37 (sdopl¼0.0) +2.80 9.57

82 Ph

Ph

H OH
O �6.0 (rphCO¼2.0) �12.72 �115 (acetone) 19.2 �96.2

33aap�23.8 (rphCO¼2.6) �50.65 4.8

83 MeP

H NH2

O

HO
OH

�53.48 (sNH2
¼0) �59.36 �4.8 (H2O) 0.090

+29.5 33aaq�54.51 (sNHþ
3
¼0:44) 0.088

84 EtP

H NH2
O

HO
OH

�96.02 (sNH2
¼0) �120.0

�16.5
(1 N NaOH)

0.17
+24.8 33aar

�96.67 (sNH2
¼0:44) 0.17

85 n-C5H11P

H NH2
O

HO
OH

�259.5 �188.5 �25.0 (NaOH) 0.16 — 33aas

86 Me Me

HO

HO

H

H

�7.61�2¼�15.32 �13.70 �13 (neat) 0.85 �40.7 33aat

87
HO H

CO2H

H OH

CO2H

+7.27�2¼14.54 +21.81 +12.4 (H2O) 0.57 — 33aau

88
HHO H OH �13.86�2¼�27.72 �28.83 �40.4 (CHCl3) 1.45 �41.5 33aav

89
Ph

MeH

NHMeHO
H

(1R,2S)

det(D1)¼�21.37

�19.58 �34.0 (H2O) 2.86 �44.2 33aaw
det(D2)¼+9.5P

det(D)¼�11.87

(continued)
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Table 4. (continued)

Molecule no. Structure det(D) [M]/k0 [a]D (determined) k0 [a]D

(DFT)a
Ref.

90 Ph

MeH

NHMeHO
H

(1S,2S)

det(D1)¼+21.37

+50.93 + 61.0 (H2O) 1.98 — 33aax

det(D2)¼+9.5P
det(D)¼+30.87

a The DFT method used in these predictions first established all the specific conformations of each molecule at the B3LYP/6-31G(d) level and then employed
the B3LYP/aug-cc-pVDZ level to compute the optical rotation.

b dkpl¼2,5-dione-pyrrolyl (in no. 81).
5.40, 6.63, and 7.39) are in good agreement. Using the exper-
imental rotations for compounds 12–14, measured neat, the
calculated det(D) values resulted in small variations in k0.
The calculated det(D) values for 33 and 34 led to k0 values
2.80 and 2.90 in the essentially identical solvating media
of cyclopentane and cyclohexane. The experimental rota-
tions of alcohols 24–28 and 1,3-diol 89 were obtained in
CHCl3. Their corresponding k0 values upon applying the
matrix model are 1.45, 1.42, 0.94, 1.16, 1.55, and 1.45
(average¼1.33), respectively. Again these values are close.
Cyanohydrins 29–31 and 43–44 also gave tightly grouped
k0 values (5.95–4.20 and 4.28–3.97). When the small nitrile
group of 30 is directly replaced with the phenyl ring in com-
pound 60, the k0 value only changes from 4.43 to 5.71 de-
spite this radical structure change. This change is of the
same range as the k0 variation within the series 29–31. The
k0 values for the structurally similar series 45–47 are very
close to 4.1 (4.20, 4.14, and 3.96). The compounds, 65–67
have different functional groups (acid, acid chloride, ester,
phenyl), yet their k0 values are 5.99, 3.97, and 4.03 in
chloroform.

The directions of rotation were predicted incorrectly in only
two of 90 compounds in Table 4. This occurred for 50 and 52
where the experimental rotation values were extremely small
(both less than 0.01�). Taken together, these results suggest
that this matrix model holds significant promise for predict-
ing the magnitude and direction of specific rotations.

Aminoalcohols 63 and 72 have same (S)-configuration and
differ only in the structure of the butyl group attached to
the stereogenic center (2-methylpropyl vs tert-butyl). The
calculated det(D) for (S)-63 is +0.82. In contrast, the value
of det(D) for (S)-72 is +10.02, almost 12 times larger than
that of (S)-63. The experimental values of [a]D for (S)-63
is 4.0� while that for (S)-72 is +37� in ethanol, some nine
times greater than (S)-63.

As mentioned above, when a group of molecules have large
differences in structure, the resulting k0 values can vary even
when their rotations were determined under the same condi-
tions. For example, the k0 values of compounds 8–11 change
from 0.71 to 2.60, 4.14 and 5.44, respectively. Molecules
with both H and D atoms bound to the same stereogenic cen-
ter are known to exhibit small specific rotation values. In ac-
cord with this observation, the matrix model predicted small
values for the four compounds 50–53, which have varied
structures. The k0 values here are quite similar also (see
50–53 in Table 4).
The B3LYP/aug-cc-pVDZ level DFT method was also used
to compute the optical rotation for a total of 65 chiral mole-
cules after all conformations for each of them were first
obtained at the B3LYP/6-31G(d) level.38 They are also sum-
marized in Table 4 for easy comparison to experimental
values and matrix model predictions. When a chiral mole-
cule has many conformations, only the conformations,
whose relative energies are between 0 and 3.0 kcal/mol
above the most stable conformation were used in further op-
tical rotation calculations (e.g., 17 conformations of the 35
total conformations were used in the optical rotation calcu-
lations of chiral molecule number 17). The conformations
with relative energies of 3.0 kcal/mol higher than the most
stable one, have very low populations that can be neglected.
The predictions of the optical rotation values for acyclic
compounds (stereogenic centers are not in rings) at this
DFT theoretical level were not as good as those for relatively
rigid cyclic compounds (chiral centers are located in rings).
The major reason may be that (1) more conformations need
to be investigated in computations of optical rotation for
these acyclic chiral compounds, and (2) also the computa-
tional level may not be high enough to obtain the more
accurate geometries. For example, calculated optical
rotation values of 2-chlorobutane and 2-cyanobutane were
24.0� and 23.6�, respectively, at the B3LYP/aug-cc-
pVDZ//B3LYP/6-31G(d) level (see Supplementary data for
details). These values became 32.6� and 33.8� at the
B3LYP/aug-cc-pVDZ//MP2/6-311+G(d) level of theory, re-
spectively.21d The latter values are close to the experimental
results, which are +33.8�21d or 38.0�33am for 2-chlorobutane
and 30.0�33am or 36.3�21d for 2-cyanobutane, respectively.
More accurate conformational geometries improve the accu-
racy of predicted optical rotations. However, the computa-
tions of optical rotation at the B3LYP/aug-cc-pVDZ//MP2/
6-311+G(d) level of theory are not economic when an acy-
clic chiral molecule has many conformations that need to
be investigated.

5.2. The det(D) of L-cysteine and its disulfide dimer

The complexity increases when two or more substituents in
the same chiral molecule interact with each other. For exam-
ple, the experimental optical rotations of L-cysteine and its
disulfide dimer have long puzzled chemists. It represents
a model system of some interest. L-cysteine hydrochloride,
91, exhibits an experimentally measured specific rotation,
[a]D, of +6.5 in 2 N HCl while its dimer hydrochloride,
92, exhibits a rotation of �217.8 in 1 N HCl.35 While one
might naively expect the dimer to have a specific rotation
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with about twice the magnitude and same direction as that
of L-cysteine, the dimer 92 actually exhibits a rotation 33
times greater in magnitude and in the opposite direction.
Calculation of specific rotation via the matrix model leads
to det(D) values of �1.85 and �2.39 for L-cysteine hydro-
chloride, 91 (k0¼�3.51 and �2.72) using electronegativity
values (c) of 3.736 and 3.837 for NH3

+, respectively, and of
2.8 for COO�.36

The values of det(D) for dimer 92 are listed in Table 5 as
a function of the radius, r, using both c¼3.7 and 3.8 for
–NH3

+. It is not easy to determine the radius of the large sub-
stituent (–CH2SSCH2NH(NH3)COO�) due to the large
number of conformations possible, many of which would
have similar energies and be populated at ambient tempera-
ture. Therefore, a series of r values were used in the calcu-
lations to illustrate the response of det(D) as radius
increases. Since, the measured specific rotation is for the
hydrochloride salt, 92, the amino group must be replaced
by –NH3

+. Hence the value of det(D) for 92 depends on the
electronegativity values used for –NH3

+. It will also require
the use of the different symmetry exhibited by sp3 hybrid-
ized –NH3

+ (s¼0.44) versus –NH2 (s¼0.0). Values of
det(D) were calculated for 92 using –NH3

+ electronegativity
values of both 3.7 and 3.8, where r was assigned values
of 3–8. The corresponding values of det(D1) are listed in
Table 5. Clearly, both electronegativity and r values have
large effects on det(D). The magnitude increased with in-
crease in both c and r. Using the k0 values of �3.51 and
�2.72 (obtained for 91) to calculate det(D) from the exper-
imental [a]D value of �217.8 gives values of 62.1 and 80.4,
respectively. This suggests that –CH2SSCH(N+H3)COOH
has a radius of about 7.2–7.7 Å in solution. This seems
reasonable in view of expected change–change repulsions
between the two –NH3

+ groups.

Table 5. The effect of the radius of r, –CH2SSCH2CH(+NH3)COOH, on the
value of det(D) using two values of electronegativity (c) for NH3

+

r det(D) of 92 when c¼3.7 det(D) of 92 when c¼3.8

3.0 �14.46 �18.37
4.0 �25.80 �31.39
5.0 �36.94 �44.40
6.0 �48.09 �57.41
7.0 �60.51 �70.43
8.0 �71.65 �83.44
5.3. The det(D) of bromochlorofluoromethane
and (S)-bromochlorofluoroiodomethane

Bromochlorofluoromethane, 93, is an interesting model
molecule containing highly electronegative fluorine. It has
been studied for many years.39 Its direction of rotation versus
configuration has been defined. (S)-93 has a small positive
value: +1.78��0.18 (in cyclohexane) at 100% ee.10e Our
initial matrix calculation, using standard tetrahedral geo-
metry, predicts the (S)-configuration of this chiral molecule
will have a sizeable negative value for rotation (e.g.,
det(D)¼�38.4), unlike the small positive experimental
value. However, steric repulsions exist among the halogen
atoms and an appreciable electrostatic attraction between
the F and H atoms deforms the true molecular geometry
away from 109.5� angles. This will cause the initial matrix
calculation, which used all 109.5� bond angles to be in error
and overestimate both the value of det(D) and the optical
rotation. On the other hand, (S)-bromochlorofluoroiodo-
methane, 94, with only repulsive interactions among its
substituents (unlike 93) is predicted to have a small optical
rotation value with a negative sign (e.g., det(D)¼�0.15).

The initial matrix model calculation on 93 pointed out the
need to use more realistic geometries. The geometries of
molecules 93 and 94 were both optimized using the AM1
method. The distortion from a perfect tetrahedral geometry
is significant for 93 where :HCF¼109.6; :HCCl¼106.4
and :HCBr¼105.6. The calculated det(Dz) for the AM1-
optimized (S)-93 geometry is +3.93. The det(Dz) for AM1-
optimized (S)-94 becomes �0.66. Therefore, the matrix
model when using a more correct geometry correctly pre-
dicts that (S)-(+)-93 has a small rotation value when realistic
geometries are used. The optical rotation of (S)-94 is pre-
dicted to be about �0.3� if its optical rotation is measured
under similar conditions to that of (S)-93. However, this pre-
dicted value has not yet been verified by experiments.

5.4. The effects of symmetry and electronegativity on the
specific optical rotation

In N-protonated-2-aminoalcohol 80, the effects of the
electronegativity and symmetry on the calculated optical
rotations are observed. When the electronegativity of the
nitrogen atom is changed from 3.7 to 3.8, the det(D) varies
from 0.92 to 2.80. When the amine group’s symmetry
+H3N H

CO2
-

CH2SH

15.0
15.1
18.7
1.0

1.85
1.85
2.1
1.2

3.7
2.5
2.8
2.1

0.44
0.0
0.0
1.0

= - 3.12

91

+H3N H

CO2
-

CH2S

+H3N H

CO2
-

SCH2

92

15.0
15.7
18.7
1.0

1.85
r
2.1
1.2

3.7
2.5
2.8
2.1

0.44
0.0
0.0
1.0

H

Cl

Br

F
det(D) =

80.0
19.0
35.5
1.0

1.95
1.35
1.8
1.2

2.8
4.0
3.0
2.1

1.0
1.0
1.0
1.0

= -38.44

93

I

Cl

F

Br
det(D) =

127.0
35.5
80.0
19.0

2.15
1.80
1.95
1.35

2.5
3.0
2.8
4.0

1.0
1.0
1.0
1.0

= -0.15

94
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changes from 0.00 to 0.44 for the protonated amine and the
electronegativity changes from 3.0 (–NH2) to 3.8 (–NH3

+),
the det(D) value varies from +2.06 to +5.70. The effects
are sharp in this example. Compound 83 is another example
in which the state of the amine function must be considered.
Compound 83 can exist as the amino phosphonic acid or as
the N-protonated zwitterion. In the zwitterion, the electro-
negativity of N is changed from 3.0 to 3.8, and the symmetry
changes from 0 (–NH2) to 0.44 (–NH3

+). Although the vari-
ables have big changes in matrix model, the changes of
det(D) value of 83 are very small (originally from �53.48
to �54.51) in the zwitterion. Obviously, a same variable
will play different roles in different chiral molecules.

The lone pair of electrons on an a,b-unsaturated imide nitro-
gen are conjugated and the function is planar. An example is
no. 81. If the planar conformation is deformed to non-planar
conformations, the values of det(D) will change. The det(D)
value is very sensitive to the amount of deformation. The
det(D) is +2.06 when the imide is planar, but this changes
to +6.37 when the nitrogen out of plane deformation is
only 0.5�. Larger the radius is, smaller the computed
det(D) will be, e.g., if r¼1.8, det(D)¼6.17 and r¼2.1,
det(D)¼5.55. See Figure 2.

5.5. The effect of the radius of the substituent on the
optical rotation

In 82, a radius of 2.0 Å was used for the PhC]O substituent
in this calculation. If the radius increases to 2.2 Å, the det(D)
value decreases from �6.0 to �23.89. This is a very large
change. How large an effect changing the radius has on the
optical rotation depends very specifically on the molecule’s
structure. Each factor’s effect on the optical rotation must be
specifically determined for each molecular structure, as pre-
viously mentioned above.

5.6. Dual-stereogenic-center molecules

Four dual-chiral-center molecules (molecules 87–90) were
examined. Ephedrine 89 and pseudoephedrine 90 are dia-
stereomers, differing only in the absolute configuration at
C-1. (1R,2S)-(�) Ephedrine, 89, exhibits a det(D1) value
of �21.37 and det(D2) is +9.50. Therefore, the det(D) sum

1.7 1.9 2.1

2.0

4.0

6.0

8.0

planar structure

non-planar structure

r (angstrom)

de
t (

D
)

Figure 2. The computed det(D) changed when the planar conformation
changes to non-planar conformation.
is �11.87. For the enantiomers, (1R,2R)-90 and (1S,2S)-
90, the sums of the det(D) values for each stereogenic center
are as follows:

(1R,2R)-pseudoephedrine, 90X
detðDÞ ¼ ð� 21:37Þ þ ð� 9:50Þ ¼ �30:87;

(1S,2S)-pseudoephedrine, 90X
detðDÞ ¼ 21:37þ 9:50¼ 30:87:

The predicted absolute optical rotation values of (1R,2R)
or (1S,2S)-90 should be about 2.6 times larger than those
of (1R,2S) or (1S,2R)-89. These calculated relative values
approximate the observed rotation values of �34� for the
HCl salt of (1R,2S)-(�) ephedrine, 89, and +61� for the
HCl salt of (1S,2S)-pseudoephedrine, 90, both obtained in
water. Experimentally, the rotation of 90 is 1.8 times larger
than 89.

The matrix method could be extended to molecules with two
or more stereogenic centers, ring-structured stereogenic
molecules and chiral compounds, which do not have one
or more stereogenic centers, such as dissymmetric allenes
or substituted biphenyls with restricted rotation. The exam-
ples of molecules with two stereogenic centers are summa-
rized in Table 4 (see 86–90). The same principles can be
used to compute the optical rotation for ring-structured chi-
ral molecules. Predicting rotations for allenes requires defin-
ing the elements in a way that does not reference everything
to specific atoms that are adjacent to the atom at the origin of

the coordinate system. For example, CCC
A

B E

D
or

substituted biphenyls with restricted rotation would be
put into a 3-D coordinate system. The key point is that
the groups A, B, D, and E would be in four quadrants of the
coordinate system, which is selected. Upon separating the
molecule into four parts, the parameters (elements) selected
would then be appropriately defined. For example, the center
of mass of C–D (or C–A, C–B or C–E) might be used as a dis-
tance parameter. Actually a large variety of terms to include
x, s, m and r can be designed to be used as elements. The
center carbon of allenes could be the geometric center (ori-
gin) of an axis system. Looking down the C]C]C axis puts
A, B, D, and E into different quadrants. However, that effort
will be discussed in a future extension of the model.

6. Summary

The matrix model is in its infancy. Many improvements can
be explored in the future. Accurate molecular geometries
can be used, which have either been determined experimen-
tally or accurately calculated using quantum mechanical or
molecular mechanics methods. As substituents become in-
creasingly large, the question of which conformations and
their fractional populations must be accurately addressed
in order to get proper optical rotation values. The accuracy
of the experimental rotation values cited herein from the
literature is not known. Some shortcomings of the current
matrix model calculations exist. For example, the effects
of light, solvent or temperature on the optical rotation
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were not yet investigated. However, the results obtained so
far using this matrix approach are encouraging. This sug-
gests that further development of this model should be
pursued.
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larger than the same atom’s valence radius. We use the average
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